Part Number Hot Search : 
D74LV2 4030N BH6038KN HMNR88 R10100 MAA02033 SMBJ51 HC407
Product Description
Full Text Search
 

To Download LM29150 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 1.5A Very L.D.O Voltage Regulator
FEATURES
High Current Capability 1.5A Low Dropout Voltage 350mV Low Ground Current Accurate 1% Cuaranteed Tolerance Extremely Fast Transient Response Reverse-Battery and "Load Dump" Rotection Zero-Current Shutdown Mode(5-Pin Version) Error Flag Signals Output out-of-Regulation
LM29150/1/2/3
TO-220 3/5L
(5-Pin Versions)
Also Characterized For Smaller Loads With Industry -Leading Performance specifications Fixed Voltage and Adjustable Versions TO-252 3/5L
APPLICATIONS
Battery Powered Equipment High-Efficiency " Green" Computer System Automotive Electronics High-Efficiency Linear Power Supplies High-Efficiency Post-Regulator For Switching Supply
TO-263 3/5L
ORDERING INFORMATION
Device Marking
Pinout
Package LM29150: Three Therminal Devices LM29150 - X.X Pin 1= Input, 2= Ground, 3= Output TO-220 3L LM29150RS - X.X LM29150 - X.X TO-252 3L LM29151: Five Therminal Fixed Voltage Devices LM29150R - X.X Pin 1= Enable, 2= Input, 3=Ground, 4=Output, 5= Flag TO-263 3L LM29151 - X.X TO-220 5L LM29152: Adjustable with ON/OFF control Pin 1= Enable, 2= Input, 3=Ground, 4=Output, 5= Adjust LM29151RS - X.X LM29151 - X.X TO-252 5L LM29151R - X.X LM29153: Adjustable with Flag TO-263 5L Pin 1= Flag, 2= Input, 3=Ground, 4=Output, 5= Adjust LM29152/3 TO-220 5L LM29152RS/3RS - X.X LM29152/3 TO-252 5L LM29152R/3R TO-263 5L * LM29150 - X.X (X.X = Output Voltage = 2.5, 3.3, 5.0, 12V) * LM29151 - X.X (X.X = Output Voltage = 1.5V, 2.5V, 3.0V, 3.3V, 5.0V, 12V
DESCRIPTION
The LM29150 are high current, high accuracy, low-dropout voltage regulators. Using process with a PNP pass element, these regulators feature 350mV (full load) dropout voltages and very low ground current. These devices also find applications in lower current, low dropout-critical systems, where their tiny dropout voltage and graound current values are important attributes. The LM29150 are fully protected against over current faults, reversed input polarity, reversed lead insertion, over temperature operation, and positive and negative transient voltage spikes. Five pin fixed voltage versions feature logic level ON/OFF control and an error flag which signals whenever the output falls out of regulation. On the LM29150 and LM29152, the ENABLE pin may be tied to Vin if it is not required for ON/OFF control. The LM29150 are available in 3- and 5- pinTO-220 and surface mount TO-263 packages.
Mar. 2006-Rev06
92
HTC
1.5A Very L.D.O Voltage Regulator
Block Diagram and typical Application Circuit
LM29150/1/2/3
94
* Feed Back network in fixed versions only **Adjustable version only
[ Block Diagram ]
LM
Vout=1.240V x [1+(R1/R2)]
Figure2. Adjstable output voltage configuration. For best results, the total series resistance should be small enough to pass the minimum regulator load current
Mar. 2006-Rev06
93
HTC
1.5A Very L.D.O Voltage Regulator
ABSOULTE MAXIMUM RATINGS
CHARACTERISTIC Lead Temperature(Soldering, 5 Seconds) Storage Temperature Range Input Supply Voltage(Note 1)
LM29150/1/2/3
Internally Limit 260 -65 to + 150 -20 to + 60'
OPERATING RATINGS
CHARACTERISTIC Operating Junction Temperature Maximum Operating Input Voltage Internally Limit -40 to + 125' 26V
ELECTRICAL CHARACTERISTICS I OUT =100, TA=25, unless otherwise specified All measurements at Tj=25 unless otherwise noted. Bold Values are guaranteed across the operating temperature range. Adjustable versions are programmed to 5.0V
LM29150
LM29152
Mar. 2006-Rev06
94
HTC
1.5A Very L.D.O Voltage Regulator
LM29151 / LM29153
LM29150/1/2/3
LM29151 / LM29152
[ Note. ]
1. Maximum positive supply voltage of 60V must be of limited duration (<100msec) and duty cycle(1%). The maximum continuous supply voltage is 26V 2. Full load current(IFL ) is defined as 1.5A 3. Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value with Vout to Vin 4. Vin = Vout(nominal) +1V. For example, use Vin =4.3V for a 3.3V regulator or use 6V for a 5V regulator. Employ pulse-testing procedures to minimize temperature rise. 5. Ground pin current is the regulator quiescent current. The total current drawn from the source is the sum of the load current plus the ground pin current. 6. Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range. 7. Thermal regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a 200mA load pulse at Vin= 20V (a 4W pulse) for T= 10ms 8. Vref Vout (Vin -1V), 2.3V Vin 26V, 10mAIL IFL, TJ TJ Max 9. Comparator thresholds are expressed in terms of a voltage differential at the Adjust terminal below the nominal reference voltage measured at. 6V input. To express these thresholds in terms of output voltage change, multiply by the error amplifier gain = Vout/Vref = (R1 +R2)/R2. For example, at a programmed output voltage of 5V, the Error output is guaranteed to go low when the output drops by 95mV x 5V/ 1.240V - 384mV. Thresholds remain constant as a percent of Vout as Vout is varied, with the dropout warining occurring at typically 5% below nominal, 7.7% guaranteed. 10. Ven 0.8V and Vin26V, Vout=0 11. When used in dual supply system where the regulator load is returned to a negative supply, the output Voltage must be diode clamped to ground.
Mar. 2006-Rev06
95
HTC
1.5A Very L.D.O Voltage Regulator
TYPICAL PERFORMANCE CHARACTERISTICS
LM29150/1/2/3
Figure 1. LM29150 Dropout Voltage vs, Output Current
Figure 2. LM29150 Dropout Voltage vs, Temperature
Figure 3. LM29150- 5.0 Dropout Characteristics
Figure 4. LM29150 Ground Current vs, Supply Voltage
Figure 5. LM29150 Ground Current vs, Temperature
Figure 6. LM29150 Ground Current vs, Temperature
Figure 7. LM29150-3.3 Output Voltage vs. Temperature
Figure 8. LM29150-3.3 Short Circuit Current vs. Temperature
Figure 9. LM29150 Ground Current vs. Input Voltage
Mar. 2006-Rev06
96
HTC
1.5A Very L.D.O Voltage Regulator
LM29150/1/2/3
Applications Information The LM29150 are high performance low-dropout voltage regulators suitable for all moderate to high -current voltage regulator applications. Their 350mV dropout voltage at full load make them especially valuable in battery powered systems and as high efficiency noise filters in "post-regulator" applications. Unlike older NPN-pass transistor designs, dropout performance of the PNP output of these devices is limited merely by the low Vce saturation voltage. The LM29150 family of regulators is fully protected from damage due to fault conditions. Current Limiting is provided. This limiting is linear; output current under overload conditions is constant. Thermal shutdown disables the device when the die temperature exceeds the 125 maximum safe operating temperature. Transient protection allows device survival even when the input voltage spikes between -20V and +60V. When the input voltage exceeds about 35V to 40V. The over voltage sensor temporarily disables the regulator.
Figure 3. Linear regulators require only two capacitors for operation.
Thermal Design Linear regulators are simple to use. The most complicated design parameters to consider are thermal characteristics. Thermal design requires the following application-specific parameters: * Maximum ambient temperature, TA * Output Current, IOUT * Output Voltage, VOUT * Input Voltage, VIN First, we calculate the power dissipation of the regulator from these numbers and the device parameters from this datasheet. PD=IOUT(1.01VIN-VOUT) Where the ground current is approximated by 1% of IOUT. Then the heat sink thermal resistance is determined with this formula:
Where TJ MAX 125 and CS is between 0 and 2/W. Capaitor Requirements For stability and minimum output noise,a capacitor on the regulator output is necessary. The value of this capacitor is dependent upon the output current; lower currents allow smaller capcitors. LM29150 regulators are stable with the 10uF minimum capacitor values at full load. Where the regulator is powered from a source with a high AC impedance, a 0.1uF capacitor connected between input and GND is recommended. This capacitor should have good characteristics to above 250kHz.
Mar. 2006-Rev06
97
HTC
1.5A Very L.D.O Voltage Regulator
LM29150/1/2/3
Minimum Load Current The LM29150 regulators are specified between finite loads. If the output is too small, leakage currents is too small, leakage currents dominate and the output voltage rises. The 5mA minimum load current swamps any expected leakage current across the operating temperature range. Adjustable Regulator Design
Figure 4. Adjustable Regulator with Resistors
VOUT=1.240V x [ 1+(R1/R2)]
The adjustable regulator versions, LM29152 and LM29153, allow programming the output voltage anywhere between 1.25V and the 26V maximum operating rating of the family. Two resistors are used. Resistors can be quite large, up to 1M, because of the very high input impedance and low bias current of the sense comparator: The resistor values are calculated by:
Where is VO the desired output voltage. Figure 4 shows component definition. Applications with widely varying load currents may scale the resistors to draw the minimum load current required for proper operation. Error Flag LM29151 and LM29153 versions feature and Error Flag, which looks at the output voltage and signals and error condition when this voltage and signals an error condition when this voltage drops 5% below its expected value. The error flag is an open-collector output that pulls low under fault conditions. It may sink 10mA. Low output voltage signifies a number of possible problems, including an over-current fault (the device is in current limit) and low input voltage. The flag output is inoperative during over temperature shutdwon conditions. Enable input LM29151 and LM29152 versions feature and enable (EN) input that allows ON/OFF control of the device. Special design allows "zero" current drain when the device is disabled-only microamperes of leakage current flows. The EN input has TTL/CMOS compatible thresholds for simple interfacing with logic, or may be directly tied to 30V. Enabling the regulator requires approximately 20uA of current.
Mar. 2006-Rev06
98
HTC


▲Up To Search▲   

 
Price & Availability of LM29150

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X